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A B S T R A C T

Land-shelf interactions and related environmental changes were reconstructed for the past 6 cal. kyrs inter-
preting multiproxy records from the two AMS14C-dated sediment cores from the sites located to the north and
northeast of the Lena River delta. Proxies used include terrestrial and aquatic palynomorphs, benthic/planktic
foraminifers and ostracods paired with benthic δ18O and δ13C records of Haynesina orbiculare. The study focused
on unravelling the relation between river runoff and the regional climate changes on the one hand, and its
imprint on the shelf sea environment on timescales beyond the instrumental records on the other.

The palynomorph records show that the Lena River outflow largely determined the composition of species
associations and the magnitude of terrestrial matter influx from land. Pollen assemblages of the inner Laptev Sea
shelf reflect complex pollen contribution of the Arctic tundra and remote taiga zones drained by the Lena River
and indicate a vegetation response to warmer-than-present climatic conditions between 6.0 and 4.5 cal. ka and a
subsequent gradual cooling. Fluvial influence in the records is manifested by (1) increases in sedimentation
rates; (2) high influxes of pollen/spores and freshwater chlorophycean algae, wood and plant remains; (3) ne-
gative δ13C excursions due to the introduction of dissolved inorganic carbon (DIC) from river water. Episodes of
enhanced freshwater influence in the surface water layers (fluvial events) correlate with positive benthic δ18O
excursions and increasing representation of river-distal species among benthics. Altogether, this points to an
estuarine-like reversed (north to south) bottom current activity along the submarine paleovalleys on the shelf.
The most pronounced fluvial events are recognized at 5.3–5.9, 1.5 and<0.5 cal. ka. The oldest fluvial event
coincides with the final stage of mid-Holocene climate warming. A fluvial event at 1.5 cal. ka is specifically
strong at the northeastern site thus marking a direction change of the Lena River outflow at this time and the
progressive protrusion of the delta. During the past 500 years distinct negative δ13C values at the northeastern
site reflect enhanced riverine influence. It is therefore concluded that the unprecedented change in the δ13C
trend corroborates the other evidence for a principal diversion of the major Lena River outflows into its present-
day, easterly direction.

1. Introduction

The Arctic Ocean and its marginal seas play an important role in
assessing the effects of recent global warming. Over the past decades,
significant environmental changes have been recorded in many

important Arctic ecosystems such as air temperatures, sea ice cover
extent and thickness, salinity fluctuations, amount and seasonality of
river runoffs (Gordeev et al., 1996; ACIA, 2005 and references therein).
In the Siberian Arctic, the Laptev Sea (LS) and its hinterland in parti-
cular has been identified to constitute a key region for environmental

https://doi.org/10.1016/j.palaeo.2019.109502
Received 3 April 2019; Received in revised form 29 November 2019; Accepted 30 November 2019

⁎ Corresponding author.
E-mail addresses: olrudenko2011@yandex.ru (О. Rudenko), etaldenkova@mail.ru (Е. Taldenkova), yaovsepyan@yandex.ru (Y. Ovsepyan),

a.yu.stepanova@gmail.com (А. Stepanova), hbauch@geomar.de (H.A. Bauch).

Palaeogeography, Palaeoclimatology, Palaeoecology 540 (2020) 109502

Available online 13 December 2019
0031-0182/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00310182
https://www.elsevier.com/locate/palaeo
https://doi.org/10.1016/j.palaeo.2019.109502
https://doi.org/10.1016/j.palaeo.2019.109502
mailto:olrudenko2011@yandex.ru
mailto:etaldenkova@mail.ru
mailto:yaovsepyan@yandex.ru
mailto:a.yu.stepanova@gmail.com
mailto:hbauch@geomar.de
https://doi.org/10.1016/j.palaeo.2019.109502
http://crossmark.crossref.org/dialog/?doi=10.1016/j.palaeo.2019.109502&domain=pdf


monitoring in terms of changing ecosystem parameters as a feedback to
climate change. It has been intensively studied under the framework of
the joint Russian-German collaborative “Laptev Sea System” project
(Kassens et al., 1998, 2009; Kassens and Dmitrenko, 1995; ; ). Beyond
monitoring the recent changes, many detailed analysis of marine sedi-
ment cores from the Laptev Sea shelf have been carried out to re-
construct changes in sedimentation regime and environment during
times of post-glacial, Holocene sea-level rise which reached its high-
stand in the area some time during the mid-Holocene (Bauch et al.,
1999, 2001a, 2001b; Bauch and Polyakova, 2000; Naidina and Bauch,
2001, 2011; Polyakova et al., 2005, 2006, 2009; Klyuvitkina and
Bauch, 2006; Taldenkova et al., 2005, 2008; Razina et al., 2007;
Rudenko et al., 2014).

To perspectively better understand the ongoing changes in the
Siberian Arctic and assess any possible future variability demands in-
vestigation of past, particularly late Holocene, environmental para-
meters. Among them are the spatial and temporal variability of the vast
riverine freshwater outflow onto the shelf, land-ocean sediment transfer
and climate-induced coastal vegetation changes. Thus, an effective
approach to reconstruct such factors is to study variability in abundance
and species composition of indicative fossil remains enclosed in coast-
proximal marine sediments.

The aim of the study is to present new micropaleontological data
from three marine sediment cores, recovered from the southeastern LS
adjacent to the Lena River (LR) delta. Being the largest delta system in
the entire Arctic the LR constitutes an important environmental inter-
face today as well as in the past. We have obtained from these sites,
where sediment thicknesses of Holocene age is relatively high (Bauch
et al., 1999, 2001b), new data including taxonomic composition of
pollen, spores and aquatic palynomorphs, assemblages of benthic for-
aminifers and ostracods, stable isotope composition of benthic for-
aminifers, together with new radiocarbon datings. The intention of this
study now is to complement our new proxy records with previously
published data to construct a comprehensive picture of the paleo-
venvironmental development over the past 6 cal kyr. The central focus
will be on unravelling the relation between river runoff and the re-
gional climate changes on the one hand, and its imprint on the shelf sea
environment on timescales beyond the instrumental records on the
other.

2. Regional setting

The Laptev Sea is a continental shelf sea of the Arctic Ocean with a
gently sloping plain towards the north located between the Taimyr
Peninsula in the west and the New Siberian Islands in the east. Its
southern coast is dominated by the northward protruding LR, the lar-
gest delta system in the Arctic.

2.1. Modern oceanography and climate

The LS shelf topography reveals several submarine trough-like val-
leys connected to the mouths of the main rivers (Bauch et al., 1999)
(Fig. 1) reflecting the last glacial low sea-level stand (Holmes and
Creager, 1974; Kleiber and Niessen, 1999).

LR discharge comprises c. 70% of the total to the LS (Dmitrenko
et al., 2001a). The peak values characteristic for the short summer
period (Alabyan et al., 1995; Kassens et al., 1998) cause relatively low
salinity in the affected shelf area. The LS influences Arctic climate and
environments via extensive heat exchange with the atmosphere during
the short ice-free summer and contributes to the Arctic sea ice pro-
duction during winter. In winter, fast ice extends to a depth of 20–25 m
to give way to a polynya system. Interaction between inner shelf and
сontinental slope water masses is determined by activity of offshore
northeastern winds (Meteorologicheskiye I Geofisicheskiye Issledovaniya
(Meteorological and Geophysical Researches), 2011) and fluvial runoff,
which induce reversed bottom currents, that is water moving from the

outer to the inner shelf along these paleovalleys (Dmitrenko et al.,
2001b).

On the inner shelf, present-day sedimentation is affected by fluvial
runoff and abrasion of permafrost coasts delivering considerable
amounts of sedimentary and organic matter (Bauch et al., 2001b).
During the short ice-free period, and especially during the spring
breakup, suspended particulate matter (SPM) discharged by the LR
settles quickly in the proximity of the delta (Wegner et al., 2003).
However, stronger fluvial events may form sediment layers more en-
riched in terrestrial material (plant and wood fragments, etc.), much
further away from the LR delta (Rivera et al., 2006). Considerable
amount of SPM exceeding the riverine material is additionally supplied
by coastal thermoabrasion (Rachold et al., 2000).

The LR water is discharged to the LS via four major branches cutting
the delta (Fig. 1). Trofimovskaya and Bykovskaya branches are directed
to the northeast and east and receive 86% of the total runoff, Tu-
matskaya and Olenekskaya branches flowing northward and westward
receive 7% of the runoff each (Schwamborn et al., 2002a, 2002b).

2.2. Vegetation on adjacent land as pollen source

The transfer of terrestrial material to the LS by the various processes
described above also provide ample evidence of the vegetation cover in
the hinterland. Scarce arctic tundra communities frame the coast of the
LS (Atlas Arktiki (Atlas of the Arctic), 1985;CAVM Team, 2003 Müller
et al., 2010) and a cold desert community occupies the islands. Dwarf
willow (Salix arctica, S. polaris and S. reticulata), birch (Betula nana
subsp. exilis), cereals and heath (e.g. Ledum palustre, Cassiope tetragona,
Vaccinium uliginosum and V. vitis-idaea) communities are widespread to
the south (Perfil'eva et al., 1991). Shrubby birch and alder (Alnus fru-
ticosa) occupy the low LR valley (Savelieva et al., 2013).

Woodlands with Northern larch (Larix dahurica) adjoin the tundra
zone from the south stretching through the southern part of the LR
catchment area along the LR valley up to 71°35′ N (Pisaric et al., 2001)
and forming an isolated forest island Ary-Mas, the northernmost in the
world (Stone and Schlesinger, 1993). Picea obovata distribution range
extends beyond the Arctic Circle (Sokolov et al., 1977). Within the
Khatanga River catchment and Taimyr Peninsula its border reaches
72°15′N (Kapper, 1954). Alder (Alnus hirsuta) growth within the middle
course of the LR (Raschke and Savelieva, 2017) is supported by locally
moister and warmer environments (Alpat'ev et al., 1976).

3. Material and methods

The actualistic basis for our paleoreconstructions comes from our
earlier studies of the composition of pollen spectra and NPP, for-
aminiferal and ostracodal assemblages in the surface sediments of the
LS shelf and slope (Stepanova et al., 2003, 2007; Rudenko et al., 2015;
Ovsepyan, 2016). These have shown a relationship between the oc-
currence of river-proximal indicative species on one hand, and varia-
tions in the concentrations of those microfossils best reflecting the in-
tensity of riverine outflow of suspended organic material from the LR
onto the proximal shelf on the other hand.

The studied cores and boxcore (Fig. 1) were obtained during
Transdrift II (1994) and V (1998) expeditions aboard the RV “Professor
Mul'tanovskii” and “Polarstern”, respectively. Core PM9482-2 (345 cm
long) was collected at 27 m water depth from north of the LR delta and
the confluence of the Tumatskaya branch. Core PS51/80-13 (187 cm
long, 207 cm long with core catcher) and boxcore PS51/80-11 (45 cm
long) are from 21 m water depth in the eastern Lena paleovalley
northeast of the LR delta, close to the Trofimovskaya branch.

Core PS51/80-13 and boxcore PS51/80-11 consist of bioturbated,
organic-rich gray to dark gray silty clay. Core PM9482-2 is represented
by dark greenish-gray silty clay to clayey silt below 180 cm core depth.
None of the cores show any noticeable erosional features.

Core chronologies are based on radiocarbon ages measured on
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bivalves, mixed microfossils and a wood fragment using an accelerator
mass spectrometer (AMS) at Leibniz Laboratory in Kiel (Germany). All
radiocarbon dates, including those obtained previously on the two cores
(Bauch and Polyakova, 2000; Bauch et al., 2001b), were converted into
calendar ages with the help of Calib 7.1 program (Stuiver et al., 2017).
The reservoir age of 370 ± 49 years, as determined for the Laptev Sea
shelf (Bauch et al., 2001b), was applied.

Vacuum-dried and weighed sediment samples from both cores were
studied for pollen and spores. Samples were collected as 2 cm thick
slices every 2–4 cm in core PS51/80-13 and every 5–10 cm in core
PM9482-2. For the extraction of microfossils, we used centrifugal se-
paration in potassium‑cadmium (KJ + CdJ2) heavy liquid with a den-
sity of 2.3 g/cm3. Prior to this, samples were processed with cold 10-%
solution of HCl and 10-% solution of KOH to dissolve carbonates and
silicates and then decanted with distilled water to remove clay parti-
cles. One Lycopodium spike tablet was added to every sediment sample
prior to the chemical treatment for calculating concentrations of iden-
tified palynomorphs (Stockmarr, 1971).

Both pollen and non-pollen palynomorphs (NPP), which include
freshwater colonial chlorophycean algae and marine cysts of dino-
flagellates, were identified with the aid of published keys and atlases
(Sokolovskaya, 1955; Kupriyanova and Aleshina, 1978; Reille, 1992;
Kunz-Pirrung, 1998; Komárek and Jankovská, 2001; Savelieva et al.,
2013) under ×400 magnification. In this study, Betula pollen is sub-
divided into two morphological types: B nana-type (shrub birch) and B.
sect. Albae (tree birch). Pinus pollen is also separated into two mor-
phological types (P. subgen. Diploxylon and P. subgen. Haploxylon). In
the study area the first pollen type is produced by P. sylvestris (Scots
pine) and the second one is produced mainly by P. pumila (Siberian
shrub pine) and partly by P. sibirica (Siberian pine), which grows in the
upper LR valley.

A minimum of 160–200 pollen grains per sample were counted with
exception of 9 samples, which contained<150 pollen grains.
Reworked microfossils and NPP were counted in addition and their
percentages were counted based on the total sum of identified micro-
fossils. Calculation of relative pollen frequency was based on the total

pollen sum, arboreal pollen (AP) plus non-arboreal pollen (NAP). The
relative pollen frequency of aquatic and nearshore plants as well as the
spore percentages were calculated based on AP + NAP sum. For cal-
culations and for drawing the percentage/concentration diagrams, we
used Tilia/TiliaGraph/TGView software (Grimm, 1993, 2004). To fa-
cilitate the interpretation of palynological records along a better un-
derstanding of the relationship between the main dominants of the
pollen spectra we calculated the total percentage ratio of conifers to
tundra shrubs pollen (C/TSh ratio). Following the approach recently
tested by palynological study in the Chukchi Sea (Kim et al., 2016), we
estimated accumulation rates of terrestrial (pollen and spores) and
aquatic (freshwater chlorophycean algae) palynomorphs based on grain
concentrations, linear sedimentation rates between the 14C age points,
and average Holocene wet sediment bulk density and showed them as
influxes.

Fossil foraminifers and ostracods were studied only in core PS51/
80-13 and boxcore PS 51/80–11; 2 cm thick samples were taken as
slices, for PS51/80-13 every 10 cm and for PS51/80-11 continuously.
All sediment samples were washed over a 63 μm sieve. As the two cores
were basically taken from the same site, the loss of the uppermost
30 cm in PS51/80-13 during coring was compensated for by splicing
both cores together. Since sediment samples from core PS51/80-11
were washed onboard without preceding drying, the total abundance of
microfossils is given versus the weight of washed sediment.

To obtain statistically meaningful results on foraminifers, relative
abundance of species and ecological groups are commonly calculated
only for samples which contained> 100 tests (Fatela and Taborda,
2002). However, because of their scarcity in the studied core and,
especially, boxcore, we used samples with>50 tests per sample. For
ostracods, which are usually much less abundant, the limit for per-
centage calculations was set at 30 valves. This procedure is justified
because samples were cut as slices that covered a rather large area.

In order to estimate biodiversity, we counted the number of species
per sample and applied Shannon (H) index (Hayek and Buzas, 1997).
The latter considers the abundance and homogeneity of species dis-
tribution and estimates the contribution of each species into the total
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sum.
Composition of the stable isotopes of oxygen (δ18O) and carbon

(δ13C) was determined on the tests of the benthic foraminifera species
Haynesina orbiculare. This species was previously shown to be the most
reliable for isotope measurements as it reflects the oxygen isotope
composition of ambient water in various LS environments with a con-
stant offset (Bauch et al., 2004). Isotope measurements were conducted
at Geomar (Kiel, Germany) with the automated Kiel carbonate device
coupled online to a Finnigan MAT 251 gas isotope mass spectrometer.
Isotope values are reported in the usual δ-notation relative to VPDB.

4. Results

4.1. Core chronology and sedimentation rates

The age models for core PS51/80-13 and boxcore PS51/80-11 were
constructed by interpolation between the age tiepoints assuming the
linear sedimentation rates between them and the modern age of core
tops (Table 1). Several datings were excluded from the age model
construction: the three uppermost datings of the boxcore PS51/80-11
with strongly negative δ13C signature, the two of which are reversed,
and the two reversed datings from the upper and lower parts of core
PM9482-2 (Table 1, Fig. 2). In the latter core, also the uppermost dating
above the reversed one was omitted because of the possible influence of
bioturbation.

The basal age of core PS51/80-13 is 6.4 cal. ka (with core catcher),
the age of the core itself is 6.1 cal. ka (Table 1; Fig. 2). As the upper
30 cm were lost during coring, the interpolated age of the core top
would be 1.1 cal. ka assuming a zero age at 0 cm. Average sedi-
mentation rates were calculated as cm per 10–3 years (kyr) between the
neighboring age tiepoints (Fig. 2). If we assume relatively constant
average sedimentation rates (ASR) after 5.1 cal. ka, as has been done
previously (Bauch et al., 2001b), then a significant decrease is observed
after 5.1 cal. ka, from 48 to 28 cm/kyr. However, based on the addi-
tional datings ASR dropped from 48 to 21 cm/kyr between 5.1 and
2.7 cal. ka, then to 17 cm/kyr between 2.7 and 1.5 cal. ka, when a
sudden and sharp increase in ASR (789 cm/kyr) occurred at around
1.5 cal. ka within<30 years. This layer contains wood pieces and

abundant other macroplant debris. After this sudden event, ASR de-
creased to 28 cm/10 kyr, and that estimation could be regarded as the
modern ASR for this part of the LS inner shelf. Boxcore PS51/80-11 has
the basal age of 1.9 cal. ka. Until 1.2 cal. ka ASR were 25 cm/kyr that is
similar to the ASR of the upper part of core PS51/80-13. Although the
major ASR event at 1.5 cal. ka is not directly reflected in the boxcore
sediment sequence, but there is a noticeable increase in ASR (286 cm/
kyr) at 1.2 cal. ka. We assume this might also be the same event, and the
age difference is due to the different material used for dating, (mollusk
P. arctica vs. mixed microfossils).

Besides the three reversed datings from the probably highly bio-
turbated upper and lower sections of core PM9482-2 (Table 1; Fig. 2), it
should be also noted that although the dating on wood fragment at
161 cm fits to the general trend in age, it might be several hundreds of
years older than the actual age of the sediment. The extrapolated age of
the core base is c. 2.8 cal. ka. ASR were extremely high, 2400 cm/kyr,
in the lowermost 1 m thick part of the core dating back to 2.7–2.8 cal.
ka (Fig. 2). The subsequent 1.5 m thick section was accumulated be-
tween 2.7 and 0.3 cal. ka under relatively low ASR ranging from 44 to
100 cm/kyr. During the last 300 years ASR increased up to 285 cm/kyr.

Summarizing, three short-lived events of a sharp increase in ASR
were recorded in the studied cores during the last about 3 cal. kyrs
(Fig. 2, C): the extreme 2.7–2.8 cal. ka event in the region to the north
off the LR delta; and a 1.5 cal. ka and 1.2 cal. ka events in the region to
the northeast off it; the latter might be the same event given the age
model and dating uncertainties. It should be also noted, that the former
event at the base of core PM9482-2 might be not a short- lived event,
but a continuation of a longer trend in high ASR due to the stronger
influence of river runoff in the northern direction. The modern rise in
ASR (0–0.3 cal.ka) observed in the northern region could not be re-
vealed in the record of boxcore PS51/80-11 because of the reversed
datings.

4.2. Downcore distribution pattern of pollen, spores and NPP

Ideally, the taxonomic diversity of terrestrial microfossils identified
in the sediment cores should closely reflect the vegetation of the ad-
jacent delta and hinterland. Of the total spectra 52 were pollen taxa and

Table 1
AMS14C dates converted into calendar ages with Calib 7.1 program (including original datings from Bauch et al., 2001b and Bauch and Polyakova, 2000).

Lab no Samplecm Material 14C age, yrs BP Calendar age,
yrs BP (Calib 7.1)

δ13C (‰)

Boxcore PS51/80-11 (73°27.83′N 131°39.0′E, 21 m)
KIA 32818 2 Microfossils 955 ± 30 576a −8.04 ± 0.39
KIA 32819 4 Microfossils 1835 ± 30 1409a −10.11 ± 0.40
KIA 30106 6 Microfossils 2100 ± 35 1718a −9.11 ± 0.39
KIA 30107 22 P. arctica, microfossils 1620 ± 25 1219 −2.71 ± 0.39
KIA 30108 28 Microfossils 1645 ± 25 1240 −0.63 ± 0.40
KIA 30109 43.5 Macoma sp. 2240 ± 35 1879 0.40 ± 0.36

Core PS51/80-13 (73°27.56′N 131°38.3′E, 21 m)
KIA 6873 41.5 Portlandia arctica 1910 ± 25 1491 (1503) −0.52 ± 0.10
KIA 6874 71.5 Portlandia arctica 1940 ± 25 1529 (1522) −2.19 ± 0.20
KIA 30110 91.5 Portlandia arctica 2930 ± 25 2736 1.15 ± 0.41
KIA 6875 142 Portlandia arctica 4795 ± 30 5127 (5097) −0.13 ± 0.16
KIA 6876 202 Portlandia arctica 5950 ± 35 6388 (6393) 0.47 ± 0.25

Core PМ9482-2 (74°00′N 128°11′E, 27 m)
KIA 3128 27 Portlandia arctica 590 ± 30 269 (302)a −0.04 ± 0.42
KIA 3129 47 Portlandia arctica 300 ± 30 0 (0)a −1.07 ± 0.14
KIA 3130 87 Portlandia arctica 630 ± 30 305 (358) 0.17 ± 0.23
KIA 3131 111 Portlandia arctica 1190 ± 30 757 (823) −1.73 ± 0.22
KIA 3132 161 Wood fragment 2260 ± 40 1902 (2326) −26.00 ± 0.23
KIA 3133 241 Portlandia arctica 2880 ± 30 2703 (2739) −4.14 ± 0.18
KIA 3134 273 Portlandia arctica 2990 ± 30 2786 (2839)a −1.13 ± 0.27
KIA 3135 325 Portlandia arctica 2930 ± 40 2738 (2766) 2.08 ± 0.23

Notes: cal. age in brackets - core PS51/80-13 from Bauch et al., (2001b), core PM9482-2 from Bauch and Polyakova (2000).
a Dating excluded from age model calculation.
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13 taxa belonged to spores of mosses and ferns, with the grassy part of
the spectrum being the most diverse. The taxonomic composition of
pollen and spores is overall fairly consistent throughout most of the
record in both cores, while concentrations of various groups of paly-
nomorphs change considerably, probably largely depending on the in-
tensity of river flow and, to a lesser degree, on wind effects. Altogether
they typically reflect the floristic features of several botanical and
geographical zones and subzones, namely arctic wetland moss tundra,
shrub tundra and taiga.

The fossil pollen spectra are dominated by pollen of shrub taxa,
whose share varies from 60 to 95% being generally higher in core
PM9482-2 (Fig. 3).

The enrichment of the spectra with pollen of plants typical of LR
floodplain biocenoses (mainly Alnus fruticosa and Betula nana-type) and
seaside low-meadow communities (Artemisia, Asteraceae and
Chenopodiaceae) stands out as a characteristic feature of microfossil
assemblage composition in both cores.

Spores of cryptogamic plants (mainly Polypodiaceae and Shagnum)
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predominate over the other spores. The aquatic palynomorph assem-
blage is represented by only 5 species of freshwater chlorophycean
algae, cysts of coldwater species Islandinium minutum common for the
freshened waters on the inner LS shelf (Kunz-Pirrung, 1998; Polyakova
et al., 2009) and Brygantedinium sp. Species Pediastrum kawraiskii and P.
boryanum as well as Botryococcus cf. braunii are the most abundant
among freshwater chlorophycean algae. They occur throughout both
core sequences thus indicating a steady, north- and northeastward river
water transfer through the Lena Delta.

The group of reworked pollen is represented mainly by Mesozoic
conifers (Piceapollenites, Pinuspollenites, Taxodiaceae/Cupressaceae,
Gingko sp., isolated Podocarpus unica Bolch.) and numerous three-prong

spores (Gleichenia delicata Bolch., G. umbonata Bolch., G. laeta Bolch, G.
rasilis Bolch., Leiotriletes, Phlebopteris, isolated Lygodium sp.) and does
not exceed 5–15% in total. Dark and crumpled pollen grains of Betula
and Artemisia with thickened exine were also considered to be re-
deposited.

On the basis of downcore taxonomic changes in microfossil com-
position and abundance 5 pollen assemblage zones (PAZ) were estab-
lished: 1–4 - in core PS50/80-13 and 3–5 - in core PM9482-2. Their
description is combined and given below.

PAZ 1 corresponds to the lower sediment interval (180–185 cm) of
core PS50/80-13 aging back to 5.9–6.0 cal. ka (Fig. 3). It is char-
acterized by the low concentration of pollen (20.6 × 103 grains/g) and
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chlorophycean algae remains (2.8 × 103 grains/g) along with the ab-
sence of cysts of dinoflagellates. Pollen of tundra shrub taxa (Betula
nana-type and Alnus fruticosa) predominates reaching 18.9% and 38%,
respectively. Long-distant transported Pinus pollen shows the lowest
percentage of< 8%. In the grassy part of the spectrum, the share of
pollen of Poaceae and Cyperaceae (14% in total) is rather substantial.

PAZ 2 covers the sediment interval of 127–180 cm in core PS50/80-
13 corresponding in age to 4.1–5.9 cal. ka (Fig. 3). It reveals a sig-
nificant increase in pollen and freshwater algae concentrations up to
the highest peaks of 94.2 × 103 and 13.6 × 103 grains/g, respectively,
at 155 cm core depth dating back to 5.3 cal. ka. A sharp increase in the
content of Pinus pollen up to 30% at the top of the zone, as well as the
appearance and growing proportion of the pollen of dark-needle con-
ifers (Picea obovata and Abies) are the most remarkable features of the
zone as well as the appearance of single Larix dahurica pollen.

Growing proportion of Botrychium lunaria, an indicative forest
taxon, predominance of Sphagnum and Polypodiaceae spores along with
a quasi-continuous presence of frost-tolerant Siberian rock-spike moss
spores feature the spore assemblage.

PAZ 3 characterizes the sediment interval of 70–127 cm in core
PS50/80-13 dating back to 1.5–4.2 cal. ka (Fig. 3). The interval of
145–345 cm in PM9482-2 core (Fig. 3), which corresponds in age to
approximately 1.5–>2.7 cal. ka could be correlated with the upper
part of PAZ 3 in core PS50/80-13. They both reveal the highest per-
centages of arctic shrubs (Alnus fruticosa, Salix sp., B. sect. Nanae, Eri-
cales) (up to> 85–90% in total). The lowest percentage maximum of
Cyperaceae (11%) is revealed against the background of the constant
presence of Poaceae in an amount of at least 10%. The other herb pollen
taxa although being rich in diversity are of minor importance, except
for slightly higher than in PAZ 2 share of Artemisia, Asteraceae and
Chenopodiaceae in the lower part of the zone in core PS51/80-13.

Cysts of dinoflagellates appear in PAZ 3 at 120 cm (4.1 cal. ka) but
immediately rise in concentration to peak values of up to
8.4 × 102 grains/g of dry sediment. They are represented in this core
interval by both cryophyllic species Islandinium minutum and
Nematosphaeropsis labyrynthus, a species which is adapted to compara-
tively warmer climatic conditions (Matthiessen, 1995) and demanding
marine salinities above 20 (De Vernal et al., 2001).

PAZ 3 demonstrates also a significant drop in pollen concentration
to the lowest values around 8–10 × 103 grains/g on average towards
the top of the zone, where then the concentration rises abruptly to a
peak value exceeding 95 × 103 grains/g in core PS51/80-13 at 80 cm
aging back to 1.5 cal. ka. In core PM9482-2 the same picture could be
seen at 140 cm, and pollen concentration is much higher than in core
PS51/80-13. Pollen diagrams reveal similar “jumps” in the abundance
of chlorophycean algae remains, particularly pronounced in core
PM9482-2. Peaks in concentration of microfossils in core PS51/80-13
match with the sharp increase in ASR (789 cm/kyrs) (Fig. 2).

PAZ 4 covers the uppermost 30–70 cm interval in core PS50/80-13
corresponding to 1.1–1.5 cal. ka. Taking into account that the upper
30 cm of the core top were lost, we assume that in core PM9482-2 the
correlative pollen assemblage zone covers the 40–145 cm interval ac-
cumulated during the time period of 0.3–1.5 cal. ka. A steady decrease
in pollen concentration to the average values of 11–28 × 103 grains/g
in core PS51/80-13 is likely a result of the abrupt drop in ASR (Fig. 2)
after 1.5 cal. ka. In core PM9482-2, despite a strong variability, pollen
concentration remains slightly higher (around 30–50 × 103 grains/g on
average). Pollen of Alnus fruticosa, Betula nana-type, Poaceae and Cy-
peraceae dominate the spectra, though decreasing in representation in
favor of both Pinus subgen Diploxylon and P. subgen Haploxylon. The
percentage of the pollen of grasses and heaths also decreases slightly,
amounting to 5–7% in total.
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PAZ 5 is established in the topmost 40 cm interval of core PM9482-2
and corresponds to the last 0.3 cal.yrs. It mirrors the depleted propor-
tion of conifers in favor of dwarf shrubs and Cyperaceae, suggesting an
increase in pollen productivity of shrubby tundra plants.

4.3. Downcore distribution pattern of foraminiferal and ostracodal
assemblages

Foraminiferal assemblages in core PS51/80-13 and boxcore PS51/
80-11 are dominated by “river-proximal” species quite typical for the
Arctic (cf. Polyak et al., 2002a). This group makes up between 55 and
95% in the core and up to 100% in the boxcore (Fig. 4). This assem-
blage could be considered as a stable one, typical for this part of the sea
as evidenced by the rather high, for the Arctic, Shannon diversity index
(H) that varies between 1.6 and 2.1 (Patterson and Kumar, 2002;
Babalola et al., 2013). “River-distal” species are absent in these inner
shelf cores, the group of “river-intermediate” species (cf. Polyak et al.,
2002a) averages 4–5% but reaches up to 20% in the upper part of core
PS51/80-13 (Fig. 4). Along with calcareous benthic foraminifers there
are also agglutinated forms as well as single tests of planktonic species
Neogloboquadrina рachyderma sin.

Similar to foraminifers, typical inner shelf euryhaline species
Paracyprideis pseudopunctillata and Heterocyprideis sorbyana dominate
among ostracods in most samples (up to 92%) (Fig. 4). Brackishwater
species Cytheromorpha macchesneyi is constantly present in the boxcore
and in the upper part of the core sections. Diverse shallow-water marine
species occur in all studied samples averaging about 20–30%. Rela-
tively deep-water species, represented by Polycope spp., Cytheropteron
occultum and C. inflatum, usually constitute< 5% in the upper 100 сm
of the core and in the upper 25 cm of the boxcore. Although not shown
in Fig. 4, ostracod juvenile ratio stays low throughout the record,
averaging 30–50%, pointing to some degree of redeposition (Whatley,
1983).

Based on the taxonomic changes of fossil benthic assemblages three
ecozones were established (Fig. 4). Ostracod juvenile ratio stays low
throughout the record, averaging 30–50%, pointing to some degree of
redeposition (Whatley, 1983).

Ecozone I corresponds to the lower sediment interval (90–183 cm) of
core PS51/80-13 corresponding to 2.7–5.9 cal. ka. It is characterized by
the low abundance and diversity of microfossils, predominance of
“river-proximal” species among benthic foraminifers (mainly Haynesina
orbiculare and Elphidium incertum) and euryhaline species P. pseudo-
punctillata among ostracods. Relatively high representation of aggluti-
nated foraminifers (Reophax scorpiurus, Аmmotium cassis, Trochammina
nana, Eggerella advena, Textularia torquata) in combination with the low
abundance of microfossils might be a result of carbonate dissolution
due to diagenetic alteration of organic matter delivered to the former
nearshore zone by river runoff and coastal abrasion.

Ecozone II characterizes the upper interval (30–90 cm) in core PS51/
80-13 and the lower interval (10–45 cm) of boxcore PS51/80-11 cor-
responding in age to 0.5–2.7 cal.ka (Fig. 4). Fossil assemblages of this
ecozone demonstrate increasing abundance and diversity of all groups
of microfossils, and decreasing percentage of “river-proximal” for-
aminifers and euryhaline ostracods. This interval also contains more
representatives of the “river-intermediate” group of foraminifers, in-
cluding the relatively deep-water species Cassidulina reniforme. The
highest number of tests (13) of planktic foraminifer N. pachyderma sin.
per sample is recorded at the depth of 70–73 cm (1.5 cal. ka). Brack-
ishwater ostracod species C. macchesneyi that was absent in the ecozone
I is constantly present here. It occurs at salinities above 18 (Frenzel
et al., 2010), while P. pseudopunctillata and H. sorbyana tolerate sali-
nities as low as 5. Other ecological groups of ostracods, shallow-water
as well as deep-water marine ostracods increase in abundance within
this ecozone reflecting salinity increase.

Also, the share of opportunistic foraminiferal species Elphidium
clavatum is rather high. It is possible to assume that this could be a

result of climate cooling and more severe sea-ice conditions. Such
conditions are favourable for E. clavatum.

Ecozone III from the uppermost 10 cm in boxcore PS51/80-11 cor-
responds to the last 0.5 cal. kyrs (Fig. 4). The total abundance and di-
versity of benthic microfossils is high. Marine influence in the bottom
water layer is strong as evidenced by the growing proportion of “river-
intermediate” foraminifers, shallow-water and deep-water ostracods.
Numerous agglutinated foraminifers are represented by R. scorpiurus, А.
cassis, Thurammina favosa.

4.4. δ18O and δ13C records of Haynesina orbiculare

Between 5.9 and 2.7 cal. ka, the δ18O record of core PS51/80-13
shows generally low values with a clear upward trend to more heavy
values, from −1.1 to about 0‰ (Figs. 4, 6). Two episodes of heavier
δ18O values, i.e. penetration of more salty marine water, are recorded at
about 5.6–5.9 cal. ka and 4.0–4.3 cal. ka. Carbon isotopic composition
δ13C shows little variability remaining close to −1.5‰, but with slight
positive shifts simultaneous to heavier δ18O values.

After 2.7 cal. ka, δ18O and δ13C records become more variable with
generally increasing values. Oxygen isotope composition varies around
0‰, but there are also short episodes of sharp positive and negative
shifts. A small positive excursion is recorded at about 2.0–2.3 cal. ka,
but the most pronounced positive shifts are recorded at 1.5 cal. ka (up
to 1.2‰) in the core and at 1.2 cal. ka (up to 0.9‰) in the boxcore.
Both episodes are preceded by negative δ18O shifts that are very low in
the boxcore, −2.3 and −1.1‰, whereas in the core only the older
negative peak is expressed, but it is much smaller, −0.14‰. Unlike
differences in δ18O values in the core and boxcore records, δ13C values
are relatively the same. Small negative shifts of δ13C down to
−1.6–1.75‰ correspond to positive δ18O shifts at approximately 1.5
and 1.2 cal. ka and likely give evidence for the riverine water input.

The most striking change in the δ13C record of the boxcore occurs
since about 0.5 cal. ka (Figs. 4, 6). The values get progressively negative
down to −4.6‰. This decreasing trend continues to the modern times
as evidenced by the δ13C composition of H. orbiculare tests from the
surface sample at the same locality which reveals an average value of
−6.6‰ (Fig. 6; Bauch et al., 2004). Oxygen isotope values are con-
siderably less variable, but the modern δ18O of H. orbiculare from the
surface sample is also low and averages −0.47‰.

5. Discussion

5.1. Interpretation of pollen signals from the southeastern inner LS shelf in
relation to vegetation and climatic changes in the LS region and the river
runoff variations

In this section we place the pollen data obtained from the LR af-
fected LS inner shelf in a regional context by comparing them to other
pollen records from marine sediment cores (Naidina and Bauch, 2001,
2011; Razina et al., 2007) as well as from coastal lakes (Andreev et al.,
2004a, 2004b; Pisaric et al., 2001) and the LR catchment (Müller et al.,
2009; 2010). Besides their climatological implications the marine
pollen data should also provide information of river runoff variations.
Assuming the estimated palynomorph concentration and influx of ter-
restrial palynomorphs as bioindicators of the intensity of the suspended
organic matter discharge onto the shelf the revealed “freshwater”
events seen in the pollen spectra can thus be compared with similar
proxy records, e.g., diatoms and aquatic palynomorphs, studied on the
same cores (Bauch and Polyakova, 2000; Polyakova et al., 2006, 2009).

While pollen signals from marine sediments render information on
the vegetational changes on the adjacent land, they are also the result of
atmospheric circulation and hydrological-erosional-preservational pe-
culiarities. To overcome fuzziness in their interpretation we therefore
used C/TSh pollen ratio between conifers and tundra plants (see
Chapter 3 for details). Besides, we also took into account the changes/
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relationships between ecologically heterogenous groups of palyno-
morphs – terrestrial (pollen and spores), marine (cysts of dino-
flagellates) and freshwater (colonial chlorophycean algae remains). A
freshwater to marine palynomorph ratio, also known as a CD-index
(e.g., Matthiessen et al., 2000; Polyakova et al., 2005; Gusev et al.,
2014), is an effective proxy for reconstructing paleohydrological en-
vironments. As we applied heavy liquid separation for palynomorph
extraction, we could not use the mentioned proxy, because cysts of
dinoflagellates may have been partially destroyed by such an aggressive
method. Noteworthy is that our data feature a much greater amount of
chlorophycean remains than was reported previously (Polyakova et al.,
2006, 2009) for which we do not have a plausible explanation yet.

5.1.1. The period from 6.0 to 4.5 cal. ka (mid-Holocene)
High abundance of pollen of arboreal plants is the prominent fea-

ture of mid-Holocene pollen spectra from the northern Central Siberia.
That could be seen from pollen records of the LS inner shelf (this study;
Naidina and Bauch, 2001; Razina et al., 2007), different parts of the
East Siberia (Andreev and Tarasov, 2007; Andreev et al., 2011 and
references therein; Velichko et al., 1997) as well as in the regions along
the Lena River valley (e.g. Pisaric et al., 2001; Müller et al., 2009;
2010). Our pollen spectra from core PS51/80-13 reveal a striking si-
milarity to the record from Dolgoe Lake located about 50 km upstream,
on the western bank of the LR (Fig. 1; Pisaric et al., 2001). This fact
points to a decisive role of river discharge in transporting terrestrial
palynomorphs onto the shelf. Indeed, both marine and lacustrine re-
cords show similar percentages of the dominant arboreal taxa with
shrub birch and shrub alder among them. At the same time, by contrast
to the Dolgoe Lake data, PS51/80-13 pollen record reveals a much
greater representation of Pinus subgen Diploxylon pollen. The latter
culminates at 30% between 5.5 and 4.5 cal. ka along with an increase in
the amount of Picea sp. and the appearance of single pollen grains of
northern larch (Larix dahurica). These characteristic features of core
PS51/80-13 record coupled with the presence of these taxa in the sto-
matae record of Dolgoe Lake (Pisaric et al., 2001) manifest the far
northward advance of forests, together with enhanced pollen pro-
ductivity of conifers due to warmer-than-present climate by the end of
the Holocene optimum. Most likely, forests were able to penetrate close
to the LS coast along the river valleys due to milder and, perhaps,
wetter local environments protected from harsh winds (MacDonald
et al., 2000). Indeed, pollen and chironomid-inferred quantitative BMA
(best modern analogue) reconstructions from Nikolay Lake, the largest
body of water within the LR delta located at the northwestern part of
Arga Island (Fig. 1; Andreev et al., 2004a), suggest mean July tem-
peratures up to 2 °C warmer than modern ones for this time (Fig. 5).

The steep increase of conifer pollen since c. 7.5 cal. ka up to a peak
values at around 40% at 5.5 cal. ka was also recorded in the sediment
core from the Yana River paleovalley around 200 km to the northeast
from core site PS51/80-13 (Naidina and Bauch, 2011) suggesting that a
climatically-controlled influx of conifer pollen to the LS inner shelf was
ubiquitous, at least within its southeastern part which has a tremendous
influence of riverine water flow. Rare palynologic data from the wes-
tern part of the outer shelf of the LS indicates a consistent share of
conifers at about 40% (Razina et al., 2007). According to models de-
rived from pollen records, forest expansion in northern Siberia could
also be associated with an increase in precipitation due to sea level rise
(Monserud et al., 1998; Kerwin et al., 1999; Wolfe et al., 2000) in
conjunction with an orbitally-induced enhancement in winter insola-
tion (Andreev and Tarasov, 2007).

Along with the elevated C/TSh ratio and terrestrial influx (Fig. 5),
the pollen record of core PS51/80-13 reveals the highest species di-
versity in both herbaceous and spore parts of the spectra at 5.3–5.5 cal.
ka, pointing to a coeval increase in pollen productivity of arctic tundra
coastal plant communities which can also be interpreted as a signal of
milder climatic conditions. Besides, the growing proportion of conifers
and, therefore, the C/TSh ratio (Fig. 5) along with simultaneous decline

in the relative abundance of local herbs, most likely reflects the ongoing
deepening of basin and retreat of coastline from the core site. Shelf
flooding accompanied by active bottom abrasion may be the cause of a
greater, albeit variable, amount of reworked microfossils in core PS51/
80-13 in the interval corresponding to transition from PAZ 2 to PAZ 3
(~4 cal. ka.)

The relatively high sedimentation rates that persisted from 6.3 to
5.1 cal. ka occurred when site PS51/80-13 was still nearer the paleo-
coastline (Bauch et al., 2001b). The massive fivefold increase in con-
centration and influxes of terrestrial microfissils at around 5.5 cal. ka
documents a freshwater event that seems time-coeval with diatom-
based paleosalinity data from the same core as well as from core PS51/
92-12 (Fig. 1; Polyakova et al., 2006, 2009). Probably being climati-
cally induced, such peaks, like the one at 5.5 cal. ka, might manifest a
particularly strong influx of organic matter via the LR, which had a
widespread impact down to the continental slope of the Laptev Sea
(Rudenko et al., 2014). Albeit percentage curves of main pollen domi-
nants in core PS51/80-13 do not fully resemble those of the Billyakh
Lake pollen diagram (Müller et al., 2009; 2010) due to the features
inherent to marine spectra, it appears that pollen records from the LS
reflect rather well the supra-regional climatic fluctuations that occurred
in the boreal (taiga) zone.

5.1.2. Late Holocene period (4.5 cal. ka to present)
Climatologically, the most prominent feature of the Subboreal

period in Siberian Arctic was, besides some general instability, a pro-
nounced cooling since 4.5 cal. ka. This cooling trend is revealed by
pollen and chironomid-inferred reconstructions from Lake Nikolay
(Andreev et al., 2004a) as well as by other palynological and oxygen
isotope data from Siberian Arctic (Meyer et al., 2015; Opel et al., 2011).
The time-coeval pollen spectra from the LR affected inner LS shelf area
corroborate these reconstructions showing a decrease in the influx and
concentration of palynomorphs and a relative decrease in conifer and
tundra shrubs pollen at the expense of grasses. On Taymyr Peninsula,
the cooling is manifested by the decline of trees, including Picea
(Andreev et al., 2004b). As a result of the cooling that led to forest
retreat in the LS region (MacDonald et al., 2000) both river and wind
governed transfer of arboreal pollen onto the shelf became significantly
limited. Judging alone from the pollen in both studied cores, this
general decline became particularly pronounced since 1.5 cal. ka. Si-
multaneously, moss-sedge-grass arctic tundra communities advanced
onto the LS coast. Since then overall conditions on land remained re-
latively stable.

The pollen record from core PM9482-2 manifests a relatively stable
and cool environment for the last 2.8 cal. kyr and the persistent river
runoff interpreted from it is similar to the published one based on
freshwater diatoms (Bauch and Polyakova, 2000; Polyakova et al.,
2006, 2009). These two proxies evidence an enhanced fluvial influence
upon the site since c. 1.5 cal. ka, which is reflected by generally in-
creasing, though variable, values of pollen and freshwater chlor-
ophycean algae concentrations (Fig. 5). Both values are more than an
order of magnitude higher in core PM9482-2 than in core PS51/80-13
likely due to a somewhat closer location to the coast. Besides a peak in
C/TSh ratio in core PM9482-2 at 2.7–2.8 cal. ka that might indicate the
considerable flow of the LR runoff in the northern direction prior to
2.7 cal. ka, the generally low C/Tsh valuesprior to 2.2 cal. ka were
probably due to climate cooling. The drastic increase in the influx of
terrestrial palynomorphs and chlorophycean algae in core PS51/80-13
at around 1.5 cal. ka certainly mirrors a strong fluvial event which is
correlative with a warming reconstructed from chironomid records in
Lake Nikolay (Fig. 5). However, in core PM9482-2, a significant in-
crease in pollen and algae concentrations together with a slight increase
in influxes are evident at around 1.1–1.2 cal. ka, time-coeval with a
fluvial event recorded in boxcore PS51/80-11 (Fig. 6). It is difficult to
judge whether the 1.2 and the 1.5 fluvial events represent a single event
or these were two different events (see Sections 4.1, 4.2 and 5.2 for
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discussion).
Palynomorph data of the uppermost 20 cm of core PM9482-2 are

somewhat conflicting and harder to explain. The sharply rising con-
centration of pollen and freshwater chlorophycean algae indicates en-
hanced fluvial input, but contradicts the decreasing concentration of
freshwater diatoms and rising percentage of sea-ice species as reported
in Bauch and Polyakova (2000). According to the established re-
lationship between the proportions of different ecological groups of
diatoms in the LS surface sediments (Bauch and Polyakova, 2000), this
suggests that due to continuing coastline retreat the location of the core
site PM9482-2 likely shifted from a nearshore zone under the winter
fast ice cover to its modern position within the more distal offshore
region with seasonal polynya and drift ice cover. Another puzzling issue
is the contrast in the concentration of chlorophycean algae in our re-
cord and in Polyakova et al. (2006). Regardless of these unsolved
problems, based on palynomorphs we can assume that freshwater in-
fluence upon PM9482-2 was always relatively high. The more recent
freshwater events might have been facilitated by climatic warming as
reconstructed from compiled circumpolar paleoclimatic records. These
show that over the past five centuries the last 150 years were the

warmest in the Arctic (Overpeck et al., 1997), a warming that led to
increased river runoff around the Arctic (Peterson et al., 2002; Wagner
et al., 2011).

5.2. Fluvial events and their manifestation in bottom water environment

Taxonomic changes in fossil microfaunal assemblages from river-
proximal to more marine ones and the variations in isotopic composi-
tion of benthic foraminifers from core and boxcore PS51/80 reveal the
combination of three major aspects of the local paleoenvironmental
variability during the last 6 cal. kyr under the modern-like sea-level
position (Bauch et al., 2001b): (1) the gradual increase in water depth
and water stratification; (2) the growth and offshore protrusion of the
LR delta; and (3) the coupling between enhanced river outflow influ-
ence in the surface water layer and activation of reversed bottom cur-
rents - from north to south - within the LR paleovalley on the inner
shelf, i.e. estuarine-like circulation (Fig. 6).

This type of circulation, which is largely wind-forced, controls hy-
drology and sedimentation on the inner- and central LS shelf
(Dmitrenko et al., 2001b; Wegner et al., 2003, 2005; Pivovarov et al.,
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2005). As the LR runoff is strongly seasonal with its peak occurring in
early summer (Ivanov and Piskun, 1999; Alabyan et al., 1995; Kassens
et al., 1998), the huge input of freshwater during floods could also
trigger reversed bottom current flows. In the nearshore region around
the LR delta extremely strong flood events may form fluvial sandy
layers with eroded lower boundary, and inclusions of terrestrial plant
material and wood fragments that can be traced 30–40 km offshore
(Rivera et al., 2006). At these river-proximal sites high accumulation
rates result in thick high-resolution sediment sequences with fluvial
layers intercalating with fine-grained marine layers (Rivera et al.,
2006). At the more distal localities, like the studied PS51/80 site, direct
evidence of fluvial bedload layers is not present, but here one can find
indications of the influence of open-sea waters reaching the inner LS
shelf along the LR paleovalley. They are manifested by positive δ18O
shifts and the increase in the percentage of the relatively deep-water
marine species (including planktic foraminifers) at the expense of the
typical inner shelf ones. We have distinguished 6 such intervals (or 5 if
considering the events at 1.5 and 1.2 cal. ka to be the same event, see
Section 4.1) (Fig. 6).

The two oldest intervals, dated to 5.6–5.9 and 4.0–4.3 cal. ka, oc-
curred during the times when the core site was located in a shallow
nearshore environment as indicated by generally low δ18O values and
the predominance of river-proximal benthic species (Ecozone I). Mixing
of fresh LR water with δ18O of −18.8‰ and saline open-sea water with
δ18O of 0‰ primarily determines the δ18O composition of bottom
waters and corresponding equilibrium calcite (Bauch et al., 2004).
Bottom waters in the river-affected Arctic shelf seas gain the 0‰ sig-
nature at salinity around 30 psu that is usually attained at water depths
around 20 m (Polyak et al., 2003). At smaller depths, mixing with
riverine water is active, and the δ18O composition of bottom water is
negative. The calculated equilibrium calcite δ18O for the studied site
PS51/80 demonstrates seasonal variability, and ranges from −1.9‰ to
−1.0‰ in summer and from −3.5‰ to −1.0‰ in winter (Bauch
et al., 2004). Interestingly, this seasonal difference might be also re-
garded as an indication of enhanced reversed bottom currents in
summer due to both, wind action over ice-free sea and early summer
flood. Given the constant positive offset from equilibrium calcite in H.
orbiculare that equals 1.7‰ (Bauch et al., 2004), the observed range of
−0.5 to −1‰ prior to 3–2.7 cal. ka implies δ18O of bottom waters was
around −2.5‰ due to the strong mixing in the nearshore zone with
water depths< 15–20 m. Composition of benthic microfossil assem-
blages also gives evidence for a shallow nearshore environment. The
dominant species among foraminifers are H. orbiculare and E. incertum
that are typical of nearshore regions including the outer estuaries of the
Yenissei and Ob’ rivers (Polyak et al., 2002a). The same is true for the
dominant ostracod euryhaline species P. pseudopunctillata (Stepanova
et al., 2003, 2007). Altogether this is a manifestation of a relatively
shallow-water environment, where stratification of the water column
was frequently distorted by winds, tides and downward penetration of
river flood waters. Although Holocene sea-level was already at its
modern height (Bauch et al., 2001b), the regional topography was still
different. The coast was closer to the core site, given the average rates
of coastal retreat due to thermal abrasion of 2–6 m/year during the late
Holocene (Are, 1980). The present-day submarine shoals located east
from the core site were exposed and formed large islands, the last
remnants of these former islands disappeared only in the 20th century
(Klyuev et al., 1981). Due to this proximity to actively abraded coasts,
ASR remained relatively high (48 cm/kyr) until about 5 cal. ka, and
then progressively decreased to 21–17 cm/kyr thereafter.

At the same time, the LR delta was less protruded offshore; its
youngest eastern sector represented by the fluvial first terrace only
started to accumulate around 5–6 cal. ka, and since then the delta ex-
panded by 120–150 km mainly in northeastern and eastern directions
(Korotaev, 1984, 2011; Are and Reimnitz, 2000; Schwamborn et al.,
2002a). Although the LR mouth was farther from the site, the influence
of river runoff was strong. The increases in the influxes of terrestrial
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palynomorphs and chlorophyccean algae as well as in the C/Tsh ratio at
5.4–6 cal. ka generally tend to correlate to the positive δ18O excursion
and the rise in the proportion of river-intermediate benthic for-
aminifers, thus giving evidence for enhanced fluvial influence and re-
versed current activity (Fig. 6). The certain observed offsets could be
related to the active coastal degradation on the one hand, or to changes
in atmospheric circulation on the other. The latter can also induce re-
versed bottom water counter flows in the shallow inner shelf zone.
However, for the same time interval, surface water salinity re-
constructions based on the concentration of freshwater diatoms suggest
freshening below 13 psu at the site PS51/80 as well as the site PS51/92
located farther north along the LR paleovalley (Polyakova et al., 2006).
This enhanced freshwater influence correlates with climate warming as
recorded not only by our palynomorph data, but also by chironomid-
based paleotemperature reconstructions (Andreev et al., 2004a; Fig. 5).
The less expressed fluvial event of 4.0–4.3 cal. ka also correlates with
rising air temperatures (Fig. 6).

After about 2.7 cal. ka, δ18O becomes generally heavier, close to or
above 0‰ (excluding the negative offsets in the boxcore, Fig. 6), al-
though being still lower than the δ18O signature of the normal marine
bottom water. Together with the growing total abundance, taxonomic
diversity and proportion of marine species among benthic microfossils
increase (Ecozones II and III) thus pointing to water deepening and
coastline retreat. The latter is confirmed by the generally low ASR of
25–28 cm/kyr.

At the same time, freshwater influence over the site increased, and
the fluvial events at 2.0–2.3, 1.5 (1.2) and<0.5 cal. ka show a more
“contrasting” pattern compared to the older ones (Fig. 6). It should be
also mentioned, that there are indications in our records of core
PM9482-2 that prior to 2.7 cal. ka more river runoff water flow was
directed to the north off the delta (high ASR, high influxes of terrestrial
palynomorphs), but then it was reduced. The 1.5 cal. ka and the 1.2 cal.
ka events (that could be the same event, see Section 4.1) are the most
evident indications of a short-lived fluvial influence as recorded by the
rapid rise in ASR to> 700 cm/kyr, abundant inclusions of plant debris
and wood fragments, the highest influxes of pollen/spores and chlor-
ophycean algae, increased C/Tsh ratio, and a negative δ13C excursion of
about 1‰ (Figs. 4, 6). The reconstructed surface water salinity at the
site is below 11–12 psu (Polyakova et al., 2006). This freshwater out-
flow likely affected also the distant offshore site PS51/92, where sedi-
mentation rates rose to nearly 500 cm/kyr between 1.3 and 1.1 cal. ka
(Mueller-Lupp et al., 2004), and surface water salinity dropped to
13–14 psu and less (Polyakova et al., 2006). The freshwater influence
over the site initiated a strong reversed inflow of saline open-sea water
that resulted in the simultaneous increase in δ18O up to the highest
values of> 1‰, the highest proportions of river-intermediate benthic
foraminifers (including C. reniforme) and shallow-water marine os-
tracods, and the maximum occurrence of planktic foraminifers. Overall,
with increasing water depth the mixing effect decreased, and the water
column at the study site became more stratified. Stabilization of the
water column structure on the inner LS shelf after 4 ka has been re-
constructed from nitrogene isotope data with establishment of modern-
like conditions of a strong summer stratification after 2 ka (Thibodeau
et al., 2018). The general climate cooling as revealed by the pollen data
(see Section 5.1) and water column stabililization probably favoured
enhanced sea-ice formation. Together with periodically strong fluvial
events this formed suitable habitat conditions for the opportunistic
species E. clavatum. The enhanced fluvial influence over the study site
as expressed by the 1.5 cal. ka event could be also due to the further
offshore protrusion of the LR delta and continuing tectonically pre-
conditioned redistribution of the river runoff in the northeastern/
eastern direction (Schwamborn et al., 2002a; Polyakova et al., 2006;
Korotaev, 2011).

The strongest freshwater influence upon the site PS51/80 in com-
bination with reversed current activity is characteristic for the last
500 years. The extremely negative δ13C values observed during this

time period could be a result of light DIC composition of the bottom
water due to re-mineralization of organic matter produced by phyto-
plankton in response to the input of nutrient-rich LR water
(Erlenkeuser, 1995). But it has been shown on the basis of water ana-
lyses that the LR water itself has an inherently low δ13C in DIC of ap-
proximately −7‰ (Bauch et al., 2004; Fig. 6). We therefore suppose
that the significant change seen in the foraminiferal δ13C during the
past 500 years gives evidence for a major diversion of the main LR
outflow via its eastern branches (Trofimovskaya and Bykovskaya) and
establishment of the modern hydrological delta channel network
with> 80% of the runoff going to these two branches.

However, this could also be partly a result of a generally increasing
river runoff to the Eurasian Arctic seas. At site PM9482-2, the increase
in sedimentation rates during the last 300 years (Fig. 2) and elevated
influxes of terrestrial palynomorphs and freshwater green algae during
the last 200 years likely resulted from the overall increase in river
runoff (probably, in combination with enhanced coastal abrasion). In
the inner Kara Sea, a slight decrease in δ13C during the last 2–3 kyr
coincides with an elevated content of freshwater diatoms, along with
the increasing proportion of marine species C. reniforme (Polyak et al.,
2002b, 2003), thus highlighting the same pattern of enhanced river
runoff combined with reversed bottom currents. A slight increase in
magnetic susceptibility in the core close to the Yenissei estuary is ob-
served at 1.5 and 1 cal. ka, although progressive cooling remains the
general trend of climate variability during the last 2.5 cal. kyr (Stein
et al., 2004).

6. Conclusions

Land-shelf interactions and related environmental changes were
reconstructed for the past 6 cal. kyr based on multiproxy records from
AMS14C-dated sediment cores located on the inner LS shelf to the north
and northeast of the LR delta.

• The observed changes are determined by the overall mid- to late
Holocene climate variability, progressive coastline retreat due to
thermoabrasion, and river runoff fluctuations. The latter are cli-
matically preconditioned, but in the study area they also depend on
the redistribution of river outflow between river branches within the
delta and the offshore protrusion of the delta itself.
• Comparison of the obtained palynomorph records with those
available from coastal lakes and across the LR catchment shows that
the LR outflow largely determined the composition of species as-
sociations and the magnitude of terrestrial matter influx from land.
• Pollen assemblages of the inner LS shelf reflect the mixed environ-
mental signal and complex pollen contribution of the adjacent Arctic
tundra and remote taiga zones drained by the LR. These indicate a
vegetation response to warmer-than-present climatic conditions
between 6 and 4.5 cal. ka and a subsequent gradual cooling.
• Episodes of enhanced freshwater influence in the surface water layer
(fluvial events) are manifested in the records by increases in sedi-
mentation rates; high influx of terrestrial material (pollen and
spores, freshwater chlorophycean algae, wood and plant remains);
negative benthic δ13C values and radiocarbon age reversals due to
specific DIC signature of the LR water. They tend to correlate with
positive benthic δ18O excursions, increasing representation of river-
distal species among benthics and the presence of rare planktic
foraminifers. This points to an estuarine-like reversed (north to
south) bottom current activity along the submarine paleovalleys.
• The most pronounced fluvial events were recorded at 5.3–5.9, 1.5
(1.2) and<0.5 cal. ka. The oldest fluvial event coincides with the
final phase of the mid-Holocene climate warming. The event at 1.5
(1.2) cal. ka is specifically strong at the northeastern site thus likely
marking a direction change of the Lena River outflow at this time
and the progressive protrusion of the delta. During the past
500 years distinct negative δ13C values at the northeastern site
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reflect enhanced riverine influence. It is therefore concluded that
the unprecedented change in the δ13C trend corroborates the other
evidence for a principal diversion of the major Lena River outflows
into its present-day, easterly direction.
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